Monolignol acylation and lignin structure in some nonwoody plants: a 2D NMR study.
نویسندگان
چکیده
Lignins from three nonwoody angiosperms were analyzed by 2D NMR revealing important differences in their molecular structures. The Musa textilis milled-wood-lignin (MWL), with a syringyl-to-guaiacyl (S/G) ratio of 9, was strongly acylated (near 85% of side-chains) at the gamma-carbon by both acetates and p-coumarates, as estimated from (1)H-(13)C correlations in C(gamma)-esterified and C(gamma)-OH units. The p-coumarate H(3,5)-C(3,5) correlation signal was completely displaced by acetylation, and disappeared after alkali treatment, indicating that p-coumaric acid was esterified maintaining its free phenolic group. By contrast, the Cannabis sativa MWL (S/G approximately 0.8) was free of acylating groups, and the Agave sisalana MWL (S/G approximately 4) showed high acylation degree (near 80%) but exclusively with acetates. Extensive C(gamma)-acylation results in the absence (in M. textilis lignin) or low abundance (4% in A. sisalana lignin) of beta-beta' resinol linkages, which require free C(gamma)-OH to form the double tetrahydrofuran ring. However, minor signals revealed unusual acylated beta-beta' structures confirming that acylation is produced at the monolignol level, in agreement with chromatographic identification of gamma-acetylated sinapyl alcohol among the plant extractives. In contrast, resinol substructures involved 22% side-chains in the C.sativa MWL. The ratio between beta-beta' and beta-O-4' side-chains in these and other MWL varied from 0.32 in C.sativa MWL to 0.02 in M. textilis MWL, and was inversely correlated with the degree of acylation. The opposite was observed for the S/G ratio that was directly correlated with the acylation degree. Monolignol acylation is discussed as a mechanism potentially involved in the control of lignin structure.
منابع مشابه
Monolignol Acylation and Lignin Structure in Nonwoody Plants
2D NMR revealed a correspondence between the molecular structure of lignins and their degree of acylation in several nonwoody angiosperms characterized by different lignin acylation types (acetate and/or p-coumarate esters) and extents (up to more that 90% of units). Some of the lignin substructures identified showed that acylation is produced at the monolignol level. Direct evidence was also p...
متن کاملEngineering Monolignol p-Coumarate Conjugates into Poplar and Arabidopsis Lignins.
Lignin acylation, the decoration of hydroxyls on lignin structural units with acyl groups, is common in many plant species. Monocot lignins are decorated with p-coumarates by the polymerization of monolignol p-coumarate conjugates. The acyltransferase involved in the formation of these conjugates has been identified in a number of model monocot species, but the effect of monolignol p-coumarate ...
متن کاملHighly acylated (acetylated and/or p-coumaroylated) native lignins from diverse herbaceous plants.
The structure of lignins isolated from the herbaceous plants sisal ( Agave sisalana), kenaf ( Hibiscus cannabinus), abaca ( Musa textilis) and curaua ( Ananas erectifolius) has been studied upon spectroscopic (2D-NMR) and chemical degradative (derivatization followed by reductive cleavage) methods. The analyses demonstrate that the structure of the lignins from these plants is highly remarkable...
متن کاملp-Coumaroyl-CoA:monolignol transferase (PMT) acts specifically in the lignin biosynthetic pathway in Brachypodium distachyon
Grass lignins contain substantial amounts of p-coumarate (pCA) that acylate the side-chains of the phenylpropanoid polymer backbone. An acyltransferase, named p-coumaroyl-CoA:monolignol transferase (OsPMT), that could acylate monolignols with pCA in vitro was recently identified from rice. In planta, such monolignol-pCA conjugates become incorporated into lignin via oxidative radical coupling, ...
متن کامل13C cell wall enrichment and ionic liquid NMR analysis: progress towards a high-throughput detailed chemical analysis of the whole plant cell wall.
The ability to accurately and rapidly measure plant cell wall composition, relative monolignol content and lignin-hemicellulose inter-unit linkage distributions has become essential to efforts centered on reducing the recalcitrance of biomass by genetic engineering. Growing (13)C enriched transgenic plants is a viable route to achieve the high-throughput, detailed chemical analysis of whole pla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Phytochemistry
دوره 69 16 شماره
صفحات -
تاریخ انتشار 2008